
Sreekar Chigurupati . 6th April 2022

Continuous control with deep
reinforcement learning

Based on a paper by Lillicrap, Timothy P., et al. 2016

Context
Continuous control

• Deep Q-Learning already successful

• DQN used to solve Atari suite

• Novelty: DQN applied to
continuous space

Q-Learning

• Off-policy temporal difference
control algorithm

•

• Q directly approximates q*

• Optimizes over action space

DQN
Q-Learning framework with a neural net

• Solves problems with high-
dimensional observation space

• Limited to low-dimensional
discrete action space

• Physical control -> continuous
high-dimensional action spaces

• Discretization: number of actions
exponential w.r.t DOF

• Fine-control also increases number

DQN

• Naive discretization may throw away action space structure

• To find action that maximizes action-value function, iterative optimization at each
step is needed

• Also uses replay buffer

Continuous case

Deep Deterministic Policy Gradient

• DPG -> actor-critic

• DDPG <- DPG + DQN

• Model-free, off-policy, actor-critic
also using deep function
approximators

• Learns policies in continuous high-
dimensional action spaces

DPG

• [Actor update]

• maintains a parameterized actor function µ(s|θµ) which specifies the current policy

by deterministically mapping states to a specific action

• The critic Q(s, a) is learned using the Bellman equation as in Q-learning with L2
weight decay

• Non-linear function approximators -> converge no longer guaranteed

Deterministic Policy Gradient

Function approximation

• Network is trained off-policy with samples from a replay buffer to minimize
correlations between samples

• Network is trained with a target Q network to give consistent targets during
temporal difference backups

• Batch normalization

Learning value functions using large, non-linear function approximators is difficult and unstable

DDPG

• Replay buffer like DQN

• Copies actor/critic networks to a target network and updates target network slowly

• Normalizes scales of input by batch normalization. Normalize each dim across
samples in each mini batch to have unit mean and variance

• Action repeats of length 3

Behavioral policy
Ornstein-Uhlenbeck process

• µ’ (st) = µ(st|θµt) + N

• Exploration policy = actor policy +
noise

• Used to generate temporally
correlated exploration for
exploration efficiency in physical
control problems with inertia

• A 3D simulation with θ = 1.0, σ = 3, μ =
(0, 0, 0) and the initial position (10,
10, 10)

DDPG
Continued

Tasks

Experiments & Results

• 20 classic physics tasks

• Cartpole swing-up, dexterous manipulation, legged locomotion and car driving

• Involve complex multi-joint movements, unstable and rich contact dynamics, and
gait behavior

• Policies can be learnt end-to-end

• Policy performance competitive to planning with full access, sometimes exceed
planning

Results

Batch normalization

Target network

Target net and batch normalization

Target net from pixel input only

Conclusion

• Target network + batch normalization necessary

• Learning from pixels can be as good as from states. Conv layers might provide a
separable state space. NN learns the necessary transformation

• Expanded model-free RL to continuous domain

https://www.youtube.com/watch?v=pOFli1Zlk4k

Discussion

