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Context

Continuous control

* Deep Q-Learning already successful
* DQN used to solve Atari suite

* Novelty: DON applied to
continuous space




()-Learning

Off-policy temporal difference
control algorithm

Q(St, A1) < Q(St, Ar) + | Risa + ymax Q(Si1,0) — Q(Si, 4r)|

Q directly approximates g*

Optimizes over action space
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DOQN

Q-Learning framework with a neural net

* Solves problems with high-
dimensional observation space

* Limited to low-dimensional
discrete action space

* Physical control -> continuous
high-dimensional action spaces

* Discretization: number of actions
exponential w.r.t DOF

* Fine-control also increases number

input
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DOQN

Continuous case

* Naive discretization may throw away action space structure

* To find action that maximizes action-value function, iterative optimization at each
step is needed

* Also uses replay buffer



Deep Deterministic Policy Gradient

e DPG -> actor-critic Critic Critic Actor
Q(s,a,) Q(s,a,) Q(s,a,)

* DDPG <- DPG + DQN

* Model-free, off-policy, actor-critic
also using deep function
approximators

'

* Learns policies in continuous high- DQN
dimensional action spaces



DPG

Deterministic Policy Gradient
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[Actor update]

maintains a parameterized actor function x(s|6#) which specifies the current policy
by deterministically mapping states to a specific action

The critic Q(s, a) is learned using the Bellman equation as in Q-learning with L2
weight decay

Non-linear function approximators -> converge no longer guaranteed



Function approximation

Learning value functions using large, non-linear function approximators is difficult and unstable

* Network is trained off-policy with samples from a replay buffer to minimize
correlations between samples

* Network is trained with a target Q network to give consistent targets during
temporal difference backups

 Batch normalization



DDPG

Replay buffer like DOQN
Copies actor/critic networks to a target network and updates target network slowly

Normalizes scales of input by batch normalization. Normalize each dim across
samples in each mini batch to have unit mean and variance

Action repeats of length 3



Behavioral policy

Ornstein-Uhlenbeck process

T 1z

u (Se) :]/t(st‘e”t) N

Exploration policy = actor policy +
noise

Used to generate temporally
correlated exploration for
exploration efficiency in physical
control problems with inertia

A 3D simulation with 6 =1.0,06=3, u =
(0, 0, 0) and the initial position (10,
10, 10)




DDPG

Continued

Randomly initialize critic network Q(s, a|#%) and actor y(s|6*) with weights 9 and 6.
Initialize target network @’ and p/ with weights 89 « 69, 94" «+ 9+
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive 1nitial observation state s
fort=1,Tdo
Select action a; = u(s¢|6*) + N} according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (s, a¢, 7¢, S¢4+1) in R
Sample a random minibatch of N transitions (s;, a;,7;, S;41) from R
Set y; = 7i + YQ' (Sit1, 1/ (5i41]0)|09")
Update critic by minimizing the loss: L = % >_.(y; — Q(s4,a;|69))?
Update the actor policy using the sampled policy gradient:

1
Voud = N ;an(SaaleQ)|s=si,a=p(si)v9“u(3|9“)|81:

Update the target networks:
99 — 769 + (1 — 7)<
oM — TOH + (1-— 7')9",

end for
end for
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Experiments & Results

20 classic physics tasks

Cartpole swing-up, dexterous manipulation, legged locomotion and car driving

Involve complex multi-joint movements, unstable and rich contact dynamics, and
gait behavior

Policies can be learnt end-to-end

Policy performance competitive to planning with full access, sometimes exceed
planning



Normalized Reward
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Batch normalization

Target network

Target net and batch normalization
Target net from pixel input only
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Conclusion

* Target network + batch normalization necessary

* Learning from pixels can be as good as from states. Conv layers might provide a
separable state space. NN learns the necessary transformation

* Expanded model-free RL to continuous domain



Cheetah
Low Dimensional Features



https://www.youtube.com/watch?v=pOFli1Zlk4k

Discussion



