

Introduction

Catastrophic forgetting

- When trained on new data / task, model forgets previously learnt information
- Not limited to ANNs₁, let alone LLMs

Cat

Motivation Relevance to LLMs

- Continual lifelong learning₂
- Instruction fine-tuning is commonplace
- Extremely relevant with the proliferation of foundational models
- Full retraining is inefficient

Reasons Why models forget?

- Sequential learning
- Changing data distribution
- Lack of sparsity
- Recency bias

Forgetting in action

Data

TIMO	GPT-4		GPT-3.5			
LLM Service	Prompting method		Δ.	Prompting method		^
Eval Time	No CoT	CoT	Δ	No CoT	CoT	$ _ \Delta $
Mar-23	59.6%	84.0%	+24.4%	50.5%	56.8%	+6.3%
Jun-23	50.5%	49.6%	-0.1%	60.4%	76.2%	+15.8%

3

Is forgetting always bad? The counter view

- Privacy preservation
- Machine unlearning
- Enhance generalization

Current work

Approaches and limitations

Regularization-Based Methods

Elastic Weight Consolidation (EWC) – Preserves critical weights but struggles with complex architectures. Knowledge Distillation – Transfers knowledge between models but does not prevent forgetting completely.

Replay-Based Methods

Experience Replay – Stores past data but raises privacy & storage concerns. Generative Replay – Uses synthetic data but adds high computational overhead.

Parameter Isolation Techniques

Adapter Layers – Adds trainable modules but requires fine-tuning of architecture.

Mixture of Experts (MoE) – Selectively activates parameters but demands high resources.

Retrieval-Augmented Generation (RAG)

Uses external knowledge retrieval but does not solve forgetting within model weights.

Gap

Replay for long-form abstract reasoning

- Existing work focuses on fact based forgetting / multimodal scenarios
- Work done on specific continual learning scenarios
- Abstract reasoning tasks ignored

These leaderboards are used to track progress in Continual Learning

Trend	Dataset	Best Model	Paper	Code	Compare
261 268 268 261 261	ASC (19 tasks)	Multi-task Learning (MTL; Upper Bound)		0	See all
201 217 218 218 229	visual domain decathlon (10 tasks)	NetTailor	L	0	See all
20 20 20 20 20	Cifar 100 (20 tasks)	Model Zoo-Continual	•	0	See all
201 201 201 201 201 201	Tiny-ImageNet (10tasks)	ALTA-ViTB/16	L	0	See all
261 268 269 288 263	F-CelebA (10 tasks)	CAT (CNN backbone)	L	0	See all
3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	ImageNet (Fine-grained 6 Tasks)	ProgressiveNet	L	0	See all
207 201 201 201 201	CUBS (Fine-grained 6 Tasks)	CondConvContinual	L	0	See all
201 201 201 201 201	Stanford Cars (Fine-grained 6 Tasks)	CPG	L	0	See all
201 201 201 201 201	Flowers (Fine-grained 6 Tasks)	CondConvContinual	L	0	See all
21 26 26 26 2D	Wikiart (Fine-grained 6 Tasks)	CondConvContinual	L	0	See all

Methodology Questions & Goals

- Use exact replay on relatively small language model - llama-2:7b
- Hypothesis is this should prevent catastrophic forgetting on abstract tasks too
- Play around with buffer size of exact replay₅
- Switch reasoning categories and check impact (object persistence, pattern completion etc.)
- Doesn't necessarily need to be the exact question we are asking

Dataset - ai2_arc₇

- Benchmark for AI reasoning over scientific knowledge.
- 7,787 multiple-choice science questions.
- Includes a 14M sentence knowledge base for context.
- Used for Al abstraction, reasoning & NLP tasks.
- Consists of two sets

name	train	validation	test
ARC-Challenge	1119	299	1172
ARC-Easy	2251	570	2376

{
"answerKey": "B",
"choices": { "label": ["A", "B", "C", "D"],
"text": ["Shady areas increased.", "Food sources increased.", "Oxygen levels
increased.",
"Available water increased."]
$ $ },
"id": "Mercury_SC_405487",
"question": "One year, the oak trees in a park began producing more acorns
than usual.
The next year, the population of chipmunks in the park also increased.
Which best explains why there were more chipmunks the next year?"
}

id ♦ string · lengths	<pre>question string · lengths</pre>	choices \$\phi\$ sequence	answerKey \$\prescript{\sigma}\$ string \cdot classes
16↔18 27%	89 ↔1 56 32.2%		B 26.2%
Mercury_SC_401653	Which land form is the result of the constructive force of a	{ "text": ["valleys carved by a moving glacier", "piles of	В
MEA_2016_8_14	Which statement best compares single-celled and multi-celled	{ "text": ["Tissues in a single-celled organism are lik	С
ACTAAP_2013_5_11	As part of an experiment, an astronaut takes a scale to the…	{ "text": ["31 pounds and 14 kilograms", "31 pounds and 84	D
MCAS_1998_4_3	Which of the following is a trait that a dog does NOT	{ "text": ["the length of its fur", "the shape of its nose",	С

Implementation plan

Discussion

- Setup
 - Plot learning curves, confusion matrices, or t-SNE embeddings of task representations
 - Establish baseline of forgetfulness
- Replay
 - Implement task-aware replay with ARC dataset
 - Use existing continual learning library to reduce implementation complexity Avalanche 8
- Evaluation
 - Track average retention post replay-training
 - Tweak replay buffer and regularization strength

References

- 1. C. Pallier, S. Dehaene, J.-B. Poline, D. LeBihan, A.-M. Argenti, E. Dupoux, J. Mehler, Brain Imaging of Language Plasticity in Adopted Adults: Can a Second Language Replace the First?, Cerebral Cortex, Volume 13, Issue 2, February 2003, Pages 155–161, https://doi.org/10.1093/cercor/13.2.155
- 2. German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, Stefan Wermter, Continual lifelong learning with neural networks: A review, Neural Networks, Volume 113, 2019, Pages 54-71, ISSN 0893-6080, https://doi.org/10.1016/j.neunet.2019.01.012.
- 3. Chen, Lingjiao, Matei Zaharia, and James Zou, "How is ChatGPT's behavior changing over time?", Harvard Data Science Review 6.2 (2024), https://arxiv.org/abs/2307.09009
- 4. https://github.com/EnnengYang/Awesome-Forgetting-in-Deep-Learning
- 5. van de Ven, G.M., Siegelmann, H.T. & Tolias, A.S. Brain-inspired replay for continual learning with artificial neural networks. Nat Commun 11, 4069 (2020). https://doi.org/10.1038/s41467-020-17866-2
- 6. https://paperswithcode.com/task/continual-learning
- 7. https://huggingface.co/datasets/allenai/ai2 arc
- 8. Lomonaco, Vincenzo, et al. "Avalanche: an end-to-end library for continual learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.